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Talking about face recognition bias, quantitatively

• Bias at what stage:
• Capture (camera, or sub-system): Failure-to-capture rate, Quality
• Template creation (for enrollment, or recognition): Failure-to-extract rate
• Type II error rates: Failure to associate person with prior sample FNMR, FNIR
• Type I error rates: Incorrect association of photo from two people FMR, FPIR

• Impact:
• Is application dependent, so harm in one application is benefit in another
• Magnitude matters!

1. Demographic differentials "ΔAB” matter. For example, it’s bad if   | FNMRA – FNMRB | > δ
2. Absolute error rates matter: For example, it’s bad if     FNMR ≫ 0 is bad

• Algorithms:
• May differ in their biases
• Know-Your-Algorithm

1. Demographic differentials
2. Other sensitivities



1:N Face Female-Male
Differential Impact



Male-Female Demographic Differential Experiment

GALLERY:
1. N = 1,600,000
2. WHITE
3. MUGSHOTS
4. BALANCED

1. 800,000 MALE
2. 800,000 FEMALE

5. AGE 21-40 at FIRST ENROLLMENT

MATED PROBES:
1. 100,000 MALE
2. 100,000 FEMALE
3. COLLECTED IN DIFFERENT YEAR 

TO GALLERY MATE
4. COLLECTED WITHIN FIVE YEARS 

OF MATE
5. AGE 21-40

NON-MATED PROBES:
1. 100,000 MALE
2. 100,000 FEMALE
3. AGE 21-40



Male and Female Miss Rates, FNIR(Rank)
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Dataset: Mugshots MF/White/20−40/T<5yrs
Tier=1, N=1600000
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FNIR(Rank) is a metric 
appropriate to 
investigational 
applications where 
human reviewers will 
adjudicate candidate lists

N = 1 600 000 subjects,
800 000 each sex.
Enrolled with 1 image each 

Female

Male



Male and Female miss rates at non-zero threshold, FNIR(T)
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Dataset: Mugshots MF/White/20−40/T<5yrs
Tier=1, N=1600000

F
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FNIR(Threshold) is a metric 
appropriate to “identification” 
applications where (false) 
positives must be limited to 
available labor supply

Female

Male

N = 1 600 000 subjects,
800 000 each sex.
Enrolled with 1 image each 
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FEMALE
MALEFEMALE

MALE

B
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HIGHEST NON-MATE SCORES MATE SCORES
Gallery contains N = 1,600,000 white subjects enrolled with a single image, 800,000 each of men and women. Age, at 
enrollment is 21-40.  The probe images are collected later, in a different calendar year, and within five years.

• Gap “A” = rightward shift of male mate distribution vs. female.
• Gap exists for most recognition algorithms
• Male faces are generally more similar to themselves

• A systematic effect, not confined to left tail.

• This is consistent with, but may not actually be caused by:
• Better photo quality in males
• More consistent presentation to camera, e.g. 

adoption of frontal pose
• More consistent condition of face, e.g. fewer changes 

in cosmetics or eyewear
• More “information-rich” faces, e.g. presence of 

consistent features. 

• The hypotheses can be inverted e.g. “females’ photos have 
worse quality”  
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HIGHEST NON-MATE SCORES MATE SCORES
Gallery contains N = 1,600,000 white subjects enrolled with a single image, 800,000 each of men and women. Age, at 
enrollment is 21-40.  The probe images are collected later, in a different calendar year, and within five years.

• Gap “B” = rightward displacement of female non-mate 
distribution relative to male.
• This gap occurs for most recognition algorithms
• The shift indicates that when a female face is searched 

against a gallery of different people, balanced 50-50 male 
and female, it tends to yield higher scores.  

• Displacement of the entire distribution shows a systematic 
effect, not confined to the right tail of the distribution.

• This is consistent with, but may not actually be caused by:
• Nature: Female faces are naturally more similar to 

each other
• Photographic effects: Females’ photos include some 

artifacts that algorithms match but should not e.g. 
hairstyles.

• If errors are all that matters, are the score distribution 
displacements important? They reveal anatomic or photographic 
interactions with the algorithms.

• This experiment uses only images of whites; different effects 
might occur in other races



1:N Face Black-White
Differential Impact



Black-white Demographic Difference Experiment

GALLERY:
1. N = 1,600,000
2. MALE
3. MUGSHOTS
4. BALANCED

1. 800,000 BLACK
2. 800,000 WHITE

5. AGE 21-40 at FIRST ENROLLMENT

MATED PROBES:
1. 100,000 BLACK
2. 100,000 WHITE
3. COLLECTED IN DIFFERENT YEAR 

TO GALLERY MATE
4. COLLECTED WITHIN FIVE YEARS 

OF MATE
5. AGE 21-40

NON-MATED PROBES:
1. 100,000 BLACK
2. 100,000 WHITE
3. AGE 21-40



Black and White Miss Rates: FNIR(Rank)
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Dataset: Mugshots
Black−White/Male/20−40/T<5yrs
Tier=1, N=1600000
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FNIR(Rank) is a 
metric appropriate 
to investigational 
applications where 
human reviewers 
will adjudicate 
candidate lists

1 3 10 50

N = 1 600 000 subjects,
800 000 each race.
Enrolled with 1 image each 



Black White Miss Rates at Non-Zero Threshold, FNIR(T)
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Dataset: Mugshots
Black−White/Male/20−40/T<5yrs
Tier=1, N=1600000
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metric appropriate to 
“identification” 
applications where 
(false) positives must 
be limited to available 
labor supply
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N = 1 600 000 subjects,
800 000 each race.
Enrolled with 1 image each 
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• Gap“A” = rightward displacement of black mate distribution 
relative to white.
• This gap occurs for many recognition algorithms, 

including some of the more accurate algorithms
• Black faces are generally more similar.
• Displacement of distribution shows a systematic effect, 

not confined only to the left tail.

• This is consistent with, but may not actually be caused 
by:
• Better photo quality
• More consistent presentation to camera, e.g. 

adoption of frontal pose
• More consistent condition of face, e.g. fewer 

changes in beard presence
• More “information-rich” faces, e.g. presence of 

consistent features. 

• The hypotheses can be inverted e.g. “white photos have 
worse quality”  

B

MATE SCORES

BLACK

WHITE

BLACK
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A

Gallery contains N = 1,600,000 males enrolled with a single image, 800,000 each of black and white. Age, at enrollment 
is 21-40.  The probe images are collected later, in a different calendar year, and within five years of enrollment.HIGHEST NON-MATE SCORES



• Gap “B” = rightward shift of black non-mate distribution vs 
white.
• This gap occurs for most recognition algorithms
• The shift indicates that when a black face is searched 

against a gallery of different people, balanced 50-50 black 
and white, it tends to yield higher scores.  

• The displacement of the entire distribution shows a 
systematic effect, it is not confined only to the right tail of 
the distribution.

• This is consistent with, but may not actually be caused by:
• Nature: Photos of black subjects’ faces are naturally 

more similar to each other
• Photographic effects: Photos of black subjects’ faces 

include some artifacts that match each other e.g. 
specular reflections.

• ...

• If errors are all that matters, are the score distribution 
displacements important? They reveal anatomic or 
photographic interactions with the algorithms. 

• This experiment uses only images of men. Different effects may 
occur for women.

B
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Gallery contains N = 1,600,000 males enrolled with a single image, 800,000 each of black and white. Age, at enrollment 
is 21-40.  The probe images are collected later, in a different calendar year, and within five years of enrollment.HIGHEST NON-MATE SCORES



Next steps

• NIST has given some quantitative feedback to developers
• 2018-05 and 2018-09
• Ongoing and expanded tests

• NIST will publish an Interagency Report Q1 2019 on 
demographics effects in face recognition

• Existing content for 1:1 algorithms in FRVT Ongoing Reports
• https://www.nist.gov/programs-projects/face-recognition-

vendor-test-frvt-ongoing

Thanks

patrick.grother@nist.gov


